Skip to contents

This is a wrapper function for running a power analysis on iterative simulation and reconstruction methods process.

Usage

powr(output, sig.level, power, delta, n)

Arguments

output

the resulting data frame from the iterative methods process

sig.level

numeric. the desired level of significance to achieve

power

numeric. the desired level of power to achieve

delta

numeric. the desired effect size to achieve

n

integer. the number of replicates/sample size. should be assigned NULL if desiring sample size

Value

A data frame object

Examples

# Use powr wrapper function on example results

library(sporeg)
library(dplyr)
library(data.table)
load(system.file("extdata", "results.Rda", package = "sporeg"))

results <- lapply(results, data.table::rbindlist, idcol = 'resolution')
results <- data.table::rbindlist(results, idcol = 'iteration') %>%
left_join(tibble(resolution = 1:4,
res_name = c("100km", "50km", "25km", "10km")),
by = "resolution")

df_var <- zero_var(results)
pow_stat <- df_var %>%
dplyr::group_by(res_name, gid) %>%
dplyr::summarise(sd = sd(dif)) %>%
dplyr::ungroup() %>%
dplyr::group_by(res_name)
#> `summarise()` has grouped output by 'res_name'. You can override using the
#> `.groups` argument.

res <- pow_stat %>% dplyr::filter(res_name == "100km")

anims <- 30
power <- 0.8
delta <- anims*0.01 # a delta within 1% of the total number of animals
sig.level <- 0.95
n <- NULL

pwr_100km <- powr(res, sig.level, power, delta)
print("Grid cell resolution: 100 km x 100 km")
#> [1] "Grid cell resolution: 100 km x 100 km"
pwr_100km
#> 
#>      Paired t test power calculation 
#> 
#>               n = 118.3773
#>           delta = 0.3
#>              sd = 3.609324
#>       sig.level = 0.95
#>           power = 0.8
#>     alternative = two.sided
#> 
#> NOTE: n is number of *pairs*, sd is std.dev. of *differences* within pairs
#>